Narp and NP1 Form Heterocomplexes that Function in Developmental and Activity-Dependent Synaptic Plasticity
نویسندگان
چکیده
Narp is a neuronal immediate early gene that plays a role in excitatory synaptogenesis. Here, we report that native Narp in brain is part of a pentraxin complex that includes NP1. These proteins are covalently linked by disulfide bonds into highly organized complexes, and their relative ratio in the complex is dynamically dependent upon the neuron's activity history and developmental stage. Complex formation is dependent on their distinct N-terminal coiled-coil domains, while their closely homologous C-terminal pentraxin domains mediate association with AMPA-type glutamate receptors. Narp is substantially more effective in assays of cell surface cluster formation, coclustering of AMPA receptors, and excitatory synaptogenesis, yet their combined expression results in supraadditive effects. These studies support a model in which Narp can regulate the latent synaptogenic activity of NP1 by forming mixed pentraxin assemblies. This mechanism appears to contribute to both activity-independent and activity-dependent excitatory synaptogenesis.
منابع مشابه
Neuronal pentraxins modulate cocaine-induced neuroadaptations.
Neuronal pentraxins (NPs) function in the extracellular matrix to bind alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Three NPs have been described, neuronal activity-regulated pentraxin (Narp), which is regulated as an immediate early gene, NP1, and neuronal pentraxin receptor (NPR). Narp and NP1 enhance synaptogenesis and glutamate signaling by clustering AMPA rece...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملObligatory Role for the Immediate Early Gene NARP in Critical Period Plasticity
The immediate early gene neuronal activity-regulated pentraxin (NARP) is an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) binding protein that is specifically enriched at excitatory synapses onto fast-spiking parvalbumin-positive interneurons (FS [PV] INs). Here, we show that transgenic deletion of NARP decreases the number of excitatory synaptic inputs onto FS (PV) INs ...
متن کاملP13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 39 شماره
صفحات -
تاریخ انتشار 2003